Accuracy of Inferences About the Reproductive Number and Superspreading Potential of SARS-CoV-2 with Incomplete Contact Tracing Data

Author:

Bayly Henry1,Mei Winnie2,Egeren Debra3,Stoddard Madison4,Chakravarty Arijit4,White Laura F1

Affiliation:

1. Boston University School of Public Health

2. University of Washington School of Public Health

3. Stanford University

4. Fractal Therapeutics

Abstract

Abstract The basic reproductive number (R0) and superspreading potential (k) are key epidemiological parameters that inform our understanding of a disease’s transmission. Often these values are estimated using the data obtained from contact tracing studies. Here we performed a simulation study to understand how incomplete data due to preferential contact tracing impacted the accuracy and inferences about the transmission of SARS-CoV-2. Our results indicate that as the number of positive contacts traced decreases, our estimates of R0 tend to decrease and our estimates of ktend to increase. Notably, when there are large amounts of positive contacts missed in the tracing process, we can conclude that there is no indication of superspreading even if we know there is. The results of this study highlight the need for a unified public health response to transmissible diseases.

Publisher

Research Square Platform LLC

Reference45 articles.

1. Estimation of reproduction numbers in real time: Conceptual and statistical challenges;Pellis L;J R Stat Soc Ser A Stat Soc,2022

2. Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the Basic Reproduction Number (R0) - Volume 25, Number 1—January 2019 - Emerging Infectious Diseases journal - CDC. [cited 2023 Jul 9];. Available from: https://wwwnc.cdc.gov/eid/article/25/1/17-1901_article.

3. Reproduction numbers of infectious disease models;Driessche P;Infect Dis Model,2017

4. Statistical Estimation of the Reproductive Number From Case Notification Data;White LF;Am J Epidemiol,2021

5. Practical considerations for measuring the effective reproductive number, Rt;Gostic KM;PLoS Comput Biol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3