A Deep-Learning Approach for Identifying Prospective Chemical Hazards

Author:

Habiballah Sohaib1,Heath Lenwood S.2,Reisfeld Brad1

Affiliation:

1. Colorado State University

2. Virginia Tech

Abstract

Abstract With the aim of helping to set safe exposure limits for the general population, various techniques have been implemented to conduct risk assessments for chemicals and other environmental stressors; however, none of these tools facilitate the identification of completely new chemicals that are likely hazardous and elicit an adverse biological effect. Here, we detail a novel in silico, deep-learning framework that is designed to systematically generate structures for new chemical compounds that are predicted to be chemical hazards. To assess the utility of the framework, we applied the tool to four endpoints related to environmental toxicants and their impacts on human and animal health: (i) toxicity to honeybees, (ii) immunotoxicity, (iii) endocrine disruption via ER-α antagonism, and (iv) mutagenicity. In addition, we characterized the predicted potency of these compounds and examined their structural relationship to existing chemicals of concern. As part of the array of emerging new approach methodologies (NAMs), we anticipate that such a framework will be a significant asset to risk assessors and other environmental scientists when planning and forecasting. Though not in the scope of the present study, we expect that the methodology detailed here could also be useful in the de novo design of more environmentally-friendly industrial chemicals.

Publisher

Research Square Platform LLC

Reference75 articles.

1. Chemical safety, health care costs and the Affordable Care Act;Landrigan PJ;American Journal of Industrial Medicine,2014

2. Fisk P. Chemical Risk Assessment: A Manual for REACH. 1st edition. Chichester: Wiley; 2014.

3. Council NR, Studies D on E and L, Sciences C on L, Health C on the IM for A of R to P. Risk Assessment in the Federal Government: Managing the Process. National Academies Press; 1983.

4. National Research Council. Science and decisions: advancing risk assessment. National Academies Press; 2009.

5. OECD. OECD cooperative chemicals assessment programme (CoCAP). 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3