Predicting the onset of Alzheimer’s disease and related dementia using Electronic Health Records: Findings from the Cache County Study on Memory in Aging (1995–2008)

Author:

Schliep Karen C.1,Thornhill Jeffrey1,Tschanz JoAnn2,Facelli Julio C.1,Østbye Truls3,Sorweid Michelle K.1,Smith Ken R.4,Varner Michael4,Boyce Richard D.5,Brown Christine J. Cliatt4,Meeks Huong4,Abdelrahman Samir1

Affiliation:

1. University of Utah Health

2. Utah State University

3. Duke University

4. University of Utah

5. University of Pittsburgh

Abstract

Abstract

Introduction: Clinical notes, biomarkers, and neuroimaging have been proven valuable in dementia prediction models. Whether commonly available structured clinical data can predict dementia is an emerging area of research. We aimed to predict Alzheimer’s disease (AD) and Alzheimer’s disease related dementias (ADRD) in a well-phenotyped, population-based cohort using a machine learning approach. Methods Administrative healthcare data (k = 163 diagnostic features), in addition to Census/vital record sociodemographic data (k = 6 features), were linked to the Cache County Study (CCS, 1995–2008). Results Among successfully linked UPDB-CCS participants (n = 4206), 522 (12.4%) had incident AD/ADRD as per the CCS “gold standard” assessments. Random Forest models, with a 1-year prediction window, achieved the best performance with an Area Under the Curve (AUC) of 0.67. Accuracy declined for dementia subtypes: AD/ADRD (AUC = 0.65); ADRD (AUC = 0.49). DISCUSSION Commonly available structured clinical data (without labs, notes, or prescription information) demonstrate modest ability to predict AD/ADRD, corroborated by prior research.

Publisher

Research Square Platform LLC

Reference24 articles.

1. 2023 Alzheimer’s disease facts and figures. Alzheimer's Association. Accessed October 7, 2023 https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf.

2. Missed and delayed diagnosis of dementia in primary care: prevalence and contributing factors;Bradford A;Alzheimer Dis Assoc Disord,2009

3. How good are medical and death records for identifying dementia? Alzheimers Dement;Schliep KC;Alzheimers Dement,2022

4. Identifying dementia cases with routinely collected health data: A systematic review;Wilkinson T;Alzheimers Dement,2018

5. Development and Validation of eRADAR: A Tool Using EHR Data to Detect Unrecognized Dementia;Barnes DE;J Am Geriatr Soc,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3