A new fractal index to classify forest disturbance and anthropogenic change

Author:

Peptenatu Daniel1,Andronache Ion1,Ahammer Helmut2,Radulovic Marko3,Costanza Jennifer K.4,Jelinek Herbert F.5,Ieva Antonio Di6,Koyama Kohei7,Grecu Alexandra1,Gruia Karina Andreea1,Simion Adrian-Gabriel1,Nedelcu Iulia Daniela1,Olteanu Cosmin1,Drăghici Cristian-Constantin1,Marin Marian1,Diaconu Daniel Constantin1,Fensholt Rasmus8,Newman Erica A.9

Affiliation:

1. University of Bucharest

2. Medical University of Graz

3. Institut za onkologiju i radiologiju Srbije

4. US Forest Service

5. Khalifa University of Science and Technology

6. Macquarie University

7. Obihiro University of Agriculture and Veterinary Medicine

8. University of Copenhagen

9. University of Arizona

Abstract

AbstractContextDeforestation remains one of the most pressing threats to biodiversity. Characterizing the resulting forest loss and fragmentation efficiently from remotely sensed data therefore has strong practical implications. Data are often separately analyzed for spatial fragmentation and disorder, but no existing metric simultaneously quantifies the shapes and arrangement of fragments.ObjectivesWe present a Fractal Fragmentation and Disorder Index (FFDI), which advances a previously developed fractal index by merging it with the Rényi information dimension. TheFFDIis designed to work across spatial scales, and efficiently reports the fragmentation of images and spatial disorder of those fragments.MethodsWe validate theFFDIwith four sets of synthetic Hierarchically Structured Random Map (HRM) multiscale images, characterized by increasing fragmentation and disorder but decreasing average size over multiple scales. We then apply theFFDIto the Global Land Analysis & Discovery Global Forest Change database satellite imagery of forest cover for 10 distinct regions of the Romanian Carpathian Mountains from 2000-2014.ResultsTheFFDIoutperformed the individual use of its two components in resolving spatial patterns of disorder and fragmentation among HRM classes. It offers a clear advantage when compared to the individual use of Fractal Fragmentation Index and the Rényi information dimension, and works in an application to real data.ConclusionsThis work improves on previous characterizations of landscape patterns. With theFFDI, scientists will be able to better monitor and understand forest fragmentation from satellite imagery. TheFFDIwill have broad applicability to biological fields where image analysis is used.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3