BEMD-3DCNN-Based Method for COVID-19 Detection

Author:

Riahi Ali1,Elharrouss Omar1,Almaadeed Noor1,Al-Maadeed Somaya1

Affiliation:

1. Qatar University

Abstract

Abstract Coronavirus outbreak continues to spread around the world and none knows when it will stop. Therefore, from the first day of the virus detection in Wuhan, scientists have launched numerous research projects to understand the nature of the virus, how to detect it, and search for the right medicine to help and protect patients. A fast diagnostic and detection system is a priority and should be found to stop COVID-19 from expanding. The purpose of the study is to combine the bi-dimensional empirical mode decomposition (BEMD) technique with 3DCNN to detect COVID-19. BEMD is used to decompose the original images into IMFs and from there built a video then apply the 3DCNN to classify and detect COVID-19 virus. In our experiment we used 6484 X-Ray images, 1802 of them were COVID-19 positive cases, 1910 normal cases, and 2772 pneumonia cases. The experiment results showed that our proposed techniques achieved the desired results on the selected dataset. It reached the accuracy of 100%.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ANFIS-Net for automatic detection of COVID-19;Scientific Reports;2021-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3