Enhancing industrial decision-making through ML-integrated frameworks and multi-criteria decision-making approach

Author:

Hala Eng. Mellouli1,Anwar Meddaoui1,Abdelhamid Zaki1

Affiliation:

1. ENSAM, Hassan II university

Abstract

Abstract

Decision-making in contemporary industrial settings has evolved from intuition to data-driven methodologies, necessitating efficient handling of vast datasets. Conventional Multi-Criteria Decision Making (MCDM) approaches struggle with the complexities of big data. This study introduces an innovative decision-support system integrating multi-criteria methods with machine learning techniques as artificial neural network. The proposed six-step framework aims to optimize operational decisions by analyzing real-time performance data. The research contributes to the advancement of decision-making methodologies in the industrial field, offering dynamic responsiveness and enhanced recommendations compared to traditional MCDM methods. While promising, future work must focus on robustness testing, particularly in real-time data dependencies, to ensure sustained efficacy and mitigate potential biases in recommendations over time.

Publisher

Research Square Platform LLC

Reference34 articles.

1. Adedeji, P.A., Akinlabi, S., Ajayi, O., Madushele, N., 2019. Non-linear autoregressive neural network (NARNET) with SSA filtering for a university energy consumption forecast. Sustain. Manuf. Glob. Circ. Econ. Proc. 16th Glob. Conf. Sustain. Manuf. 33, 176–183. https://doi.org/10.1016/j.promfg.2019.04.022

2. Al-Adwan, D.R.S., 2018. The Use of the Balanced Scorecard Performance Measurement System in Manufacturing Companies 13.

3. Are MCDM methods useful? A critical review of Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP);Asadabadi MR;Cogent Eng.,2019

4. Aziz, N.F., Sorooshian, S., Mahmud, F., 2016. MCDM-AHP METHOD IN DECISION MAKINGS 11.

5. Basheer, A., Afham, A., Goyal, S.K., 2020. Quantum $k$-nearest neighbors algorithm. https://doi.org/10.48550/ARXIV.2003.09187

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3