Estimation of Heterogeneous Population Variance using Memory-type Estimators based on EWMA statistic in the presence of Measurement Error for Time-Scaled Surveys

Author:

Qureshi Muhammad Nouman1,Tariq Muhammad Umair2,Xiong Yeng3,Hanif Muhammad2

Affiliation:

1. University of Minnesota

2. National College of Business Administration and Economics

3. U.S Census Bureau

Abstract

Abstract In this present article, we have suggested memory-type ratio, exponential ratio, product and exponential product estimators based on exponentially weighted moving average statistic for the estimation of heterogeneous population variance using stratified sampling design in presence of measurement error for time-scaled surveys. Mathematical expressions of approximate mean square error are derived using Taylor and exponential expansions for the proposed memory-type estimators. We have also discussed the situations in which the memory-type estimators would perform efficiently than the conventional estimators. The results of extensive simulation study revealed that the proposed memory-type estimators based exponentially weighted moving average statistic would perform better than the conventional estimators in the presence measurement error for time-scaled surveys under certain condition.

Publisher

Research Square Platform LLC

Reference47 articles.

1. Generalized Class of Estimators for Population Variance Using Information on Two Auxiliary Variables;Adichwal NK;Int J Appl Comput Math,2017

2. An improved class of unbiased separate regression type estimator under stratified random sampling;Bhushan S,2017

3. Research. 13 (1):35–44

4. In-type estimators for the population variance in stratified random sampling;Cekim HO;Commun Statistics-Simulation Comput,2019

5. Finite population variance estimation in presence of measurement errors;Diana G;Commun Stat - Theory Methods,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3