Research on multi-source heterogeneous big data fusion method based on feature level

Author:

Chen Yanyan1,Wang Chenxi1,Zhou Yuchen1,Gong Rongrong1,Yang Zixuan1,Li Hui1,Li Haining2

Affiliation:

1. Jiangsu Ocean University

2. Ningxia Medical University

Abstract

Abstract With the development of research on multi-modal data fusion and its combination with online data management, the application of multi-modal big data fusion in theinformation management systems is more and more extensive. How to integrate multi-modal big data effectively is the key technology to building an efficient information management system. In this paper, based on the combination of a multi-support vector machine and convolutional neural network, the feature-level data fusion of multi-source heterogeneous big data is implemented, and it is applied to the real data set to test the relevant model. Experimental results show that this method can not only realize heterogeneous integration of big data, but also has high accuracy and reliability.

Publisher

Research Square Platform LLC

Reference23 articles.

1. Vapnik V (2000) SVM method of estimating density, conditional probability, and conditional density// IEEE International Symposium on Circuits & Systems.

2. Improvements to the SMO algorithm for SVM regression;Shevade SK;IEEE Trans Neural Networks,2000

3. A professional estimate on the computed tomography brain tumor images using SVM-SMO for classification and MRG-GWO for segmentation;Ramakrishnan T;Pattern Recognit Lett,2017

4. Chang KW, Srikumar V, Dan R (2013) Multi-core Structural SVM Training// The European Conference on Machine Learning & Knowledge Discovery in Databases.

5. Parameter Optimization of SVM Based on Adaptive Mean Particle Swarm Optimization;Shu C;Meas Control Technol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3