Prestress-mediated damage strength of lattice metamaterials and its optimization

Author:

Li Xinran1,Liu Jinxing1,Soh Ai Kah2

Affiliation:

1. Jiangsu University

2. Monash University Malaysia

Abstract

Abstract Lattice metamaterials have been attracting wide research interests due to their excellent mechanical properties. Most of meta-properties have been implemented by proper geometric designs of microstructures. In this study, we examine another way to obtain outstanding properties, which has been relatively less explored. That is, we aim to adjust the loading bearing capability of lattices by periodically introducing prestress into particular lattice segments. Based on existing related works, we focus on the following two problems deserving further investigations. First, results have been provided based on a single cell with/without taking into account the interactions between each two of neighboring individual cells. Second, it is interesting to search for the optimal distribution of prestress in lattices subjected to a specific load. For the former, we propose a set of constraint equations for implementing periodic boundary conditions (PBC) on a periodic unit cell and confirm its correctness. The significance of PBC related to rotational degrees of freedom is emphasized. We then use the proposed method to calculate the initial damage surface of four kinds of prestressed lattice unit cells under PBC. For the latter, we build a new optimization algorithm with the help of the so-called Symbiotic-Organisms-Search technique (SOS), to calculate the optimal prestress setting corresponding to the requested properties. As an example, the optimal prestress setting is found to almost double the critical load to failure of the lattice in a special direction. This work may be helpful to design lattice metamaterials with programmable strengths.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3