Affiliation:
1. Bahir Dar University Institute of Technology
Abstract
Abstract
It is crucial to predict the amount of daily rainfall to improve agricultural productivities to secure food, and water quality supply to keep the citizen healthy. To predict rainfall, various researches are conducted using data mining and machine learning techniques of different countries’ environmental datasets. The Pearson correlation technique is used to select relevant environmental variables which are used as an input for the machine learning model of this study. The main objective of this study is to identify the relevant atmospheric features that cause rainfall and predict the intensity of daily rainfall using machine learning techniques. The dataset is collected from the local meteorological office to measure the performance of three machine learning techniques as Multivariate Linear Regression, Random Forest and Extreme Gradient Boost. Root mean squared error and Mean absolute Error are used to measure the performance of the machine learning model for this study. The result of the study shows that the Extreme Gradient Boost gradient descent machine learning algorithm performs better than others.
Publisher
Research Square Platform LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献