Machine Learning Techniques to Predict Daily Rainfall Amount

Author:

Liyew Chalachew Muluken1ORCID,Melese Haileyesus Amsaya1

Affiliation:

1. Bahir Dar University Institute of Technology

Abstract

Abstract It is crucial to predict the amount of daily rainfall to improve agricultural productivities to secure food, and water quality supply to keep the citizen healthy. To predict rainfall, various researches are conducted using data mining and machine learning techniques of different countries’ environmental datasets. The Pearson correlation technique is used to select relevant environmental variables which are used as an input for the machine learning model of this study. The main objective of this study is to identify the relevant atmospheric features that cause rainfall and predict the intensity of daily rainfall using machine learning techniques. The dataset is collected from the local meteorological office to measure the performance of three machine learning techniques as Multivariate Linear Regression, Random Forest and Extreme Gradient Boost. Root mean squared error and Mean absolute Error are used to measure the performance of the machine learning model for this study. The result of the study shows that the Extreme Gradient Boost gradient descent machine learning algorithm performs better than others.

Publisher

Research Square Platform LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3