The way “urbanization” is defined has strong implications for its effects on mammal abundance

Author:

Poisson Mairi K.P.1,Gebresenbet Fikirte1,Butler Andrew R.1,Tate Patrick2,Bergeron Daniel H.2,Moll Remington J.1

Affiliation:

1. University of New Hampshire

2. New Hampshire Fish and Game Department

Abstract

Abstract

It is now well-recognized that urbanization strongly impacts wildlife communities and populations. However, we typically do not know which feature(s) affect individual species most strongly, and this lack of understanding impedes theory development and effective planning for conservation and management goals. To address this knowledge gap, we evaluated how the abundance of ten mammal species responded to six different features of urbanization quantified at five spatial scales using data from 112 camera traps deployed for two years across a gradient of urbanization in New Hampshire, USA. We fit Bayesian abundance models to measure response to each feature and scale. There was no singular urban feature or spatial scale in the best model for all species. Rather, species responded uniquely to features across scales, and the scale of urban features in the best model also varied. Within a species, the magnitude and direction of response varied across features and scales, with only black bear (Ursus americanus), gray fox (Urocyon cinereoargenteus), and Virginia opossum (Didelphis virginiana) exhibiting a consistently significant unidirectional relationship with a single feature across all scales. Our results emphasize that species respond to specific urban features, thus a failure to include certain features can cause misleading inference about wildlife response to “urbanization”. Therefore, researchers must carefully justify the choice of urban feature and spatial scale at which it is represented for each species of interest. An expanded inclusion of multiple urban features in wildlife research will inform management decisions and help attain conservation goals for species impacted by urbanization.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3