Assessment the Exposure Effects of Polycarbonate with X-ray Radiation using Spectroscopic Techniques and Molecular Modeling Calculations

Author:

Zaki M. F.,Rashad A. M.,Elkalashy Sh. I.,Al-Naggar Tayseer I.1ORCID

Affiliation:

1. Ain Shams university and Najran university

Abstract

Abstract In this article, the effects of 6 MeV energy of X-ray radiation on polycarbonate polymeric films were investigated. The induced alterations are assessed using several methodologies: FTIR spectroscopy, contact angle measurements, surface roughness assessment, UV/Vis spectroscopy, and luminescence emission spectroscopy. As well, using the basic sets in the ground state of the polycarbonate structure, the vibrational analysis has been carried out using the density functional theory (DFT). The FTIR spectra display that the X-ray irradiation produces surface chemical alterations in the irradiated films due to successive degradation mechanisms due to the decrease in the detected band peaks. The basis sets that were calculated using the DFT method are in good agreement with the experimentally observed spectra. The frontier molecular orbital energies are used to assess the molecule's energy gap (HOMO-LUMO). The value of the frontier energy gap reflects the chemical reactivity and intermolecular charge transfer that take place within the molecule. The surface wettability behaviors were amended due to the decrease in the contact angle values of irradiated films. This leads to an increase in the surface roughness and surface free energy. X-ray irradiation can enhance the surface goodness of polycarbonate films and control their surface properties to be used in biocompatibility applications. The optical properties of irradiated films show modifications in the studied optical parameters. The absorbance spectra exhibited a shift in the absorption edge of the irradiated samples compared with the pristine one. This shift indicates the decreases in the band gap energy of irradiated samples. For direct transitions, the band gap decreased from 4.03 to 3.125 eV, and for indirect transitions, it decreased from 3.5 0 to 2.65 eV. This result was attributable to the formation of defects and the creation of complex charge transfer due to X-ray irradiation. The photoluminescence emission spectra show that the peak intensities are obviously influenced by increasing the irradiation doses. This is attributable to the band-band transition, donor/acceptor pairs, and bound to free transition, which correlated to the received absorbed dose.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3