Affiliation:
1. University of Minnesota
2. Emory University
3. Rush University Medical Center
Abstract
Abstract
Relapsed prostate cancer (CaP), usually treated with androgen deprivation therapy, acquires resistance to develop into lethal metastatic castration-resistant CaP. The cause of resistance remains elusive, and the lack of biomarkers predictive of castration-resistance emergence is a stumbling block in managing the disease. We provide strong evidence that Myeloid differentiation factor-2 (MD2) plays a critical role in metastasis and CaP progression. Analysis of tumor genomic data and IHC of tumors showed a high frequency of MD2 amplification and association with poor overall survival in patients. The Decipher-genomic test validated the potential of MD2 in predicting metastasis. In vitro studies demonstrated that MD2 confers invasiveness by activating MAPK and NF-kB signaling pathways. Furthermore, we show that metastatic cells release MD2 (sMD2). We measured serum-sMD2 in patients and found that the level is correlated to disease extent. We determined the significance of MD2 as a therapeutic target and found that targeting MD2 significantly inhibited metastasis in a murine model. We conclude that MD2 predicts metastatic behavior and serum-MD2 is a non-invasive biomarker for tumor burden, whereas MD2 presence on prostate biopsy predicts adverse disease outcome. We suggest MD2-targeted therapies could be developed as potential treatments for aggressive metastatic disease.
Publisher
Research Square Platform LLC