A Mathematical Model for Simulating Photoacoustic Signal Generation Process in Biological Tissues

Author:

GadAllah Mohammed Tarek1,Mohamed Abd El-Naser A.2,Hefnawy Alaa1,Zidan Hassan1,El-Banby Ghada2,Badawy Samir Mohamed2

Affiliation:

1. Electronics Research Institute

2. Menoufia University

Abstract

Abstract Background: Biomedical photoacoustic imaging (PAI) is a hybrid imaging modality based on the laser-generated ultrasound waves due to the photoacoustic (PA) effect physical phenomenon that has been reported firstly by A. G. Bell in 1880. Numerical modeling-based simulation for the PA signal generation process in biological tissues helps researchers for decreasing error trials in-vitro and hence decreasing error rates for in-vivo experiments. Numerical modeling methods help in obtaining a rapid modeling procedure comparable to pure mathematics. However, if a proper simplified mathematical model can be founded before applying numerical modeling techniques, it will be a great advantage for the overall numerical model. Most scientific theories, equations, and assumptions, been proposed to mathematically model the complete PA signal generation and propagation process in biological tissues, are so complicated. Hence, the researchers, especially the beginners, will find a hard difficulty to explore and obtain a proper simplified mathematical model describing the process. That’s why this paper is introduced. Methods: In this paper we have tried to simplify understanding for the biomedical PA wave’s generation and propagation process, deducing a simplified mathematical model for the whole process. The proposed deduced model is based on three steps: a- pulsed laser irradiance, b- diffusion of light through biological tissue, and c- acoustic pressure wave generation and propagation from the target tissue to the ultrasound transducer surface. COMSOL Multiphysics, which is founded due to the finite element method (FEM) numerical modeling principle, has been utilized to validate the proposed deduced mathematical model on a simulated biological tissue including a tumor inside. Results and Conclusion: The time-dependent study been applied by COMSOL has assured that the proposed deduced mathematical model may be considered as a simplified, easy, and fast startup base for scientific researchers to numerically model and simulate biomedical PA signals’ generation and propagation process utilizing any proper software like COMSOL.

Publisher

Research Square Platform LLC

Reference138 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3