Application of Micro-textured Surface Prepared by an Integrated Molding Process in Sustainable Turning of Titanium Alloy

Author:

Li Jinhua,Zhang Gaofeng1ORCID,Wu Gaocan,Chen Bingxing

Affiliation:

1. Xiangtan University

Abstract

Abstract Titanium alloys have been widely used as an aerospace material owing to their excellent mechanical properties. However, ordinary tools can suffer from severe chip adhesion and surface abrasion when turning titanium alloys. To address these problems, micro-textured cutting tools have become a topic of significant research. Here, to improve the preparation process of textured tools, a novel tool prepared by an integrated molding process was proposed. The performance of this novel textured tool in terms of turning Ti-6Al-4V was investigated under dry conditions and minimal quantities of lubricant (MQL). Textured surfaces with four types of patterns and dimensions were used in the turning experiment to draw a comparison with traditional cutting tools. The results showed that the textured surface exhibited a uniform and smooth appearance with no obvious defects, indicating that the integrity of the textured surface was maintained. The combination of a micro-textured surface and the MQL method decreased the process temperature and cutting force. The narrower parallel type of textured tool exhibited the best performance. The process temperature reduced to 124 ℃ for the narrower parallel textured tool under MQL, decreasing by ~ 14.5% compared with the traditional tool; the lowest main cutting force and feed force were obtained for the narrower parallel textured tool, approximately 212 N and 171 N, respectively. Significant improvements in chip adhesion and tool wear were observed for the textured tool. Application of textured surface and MQL method are both decreased the adhesive scale layer area on the rake face of tools compared with ordinary tools.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3