Development and validation of a post-induction hypotension prediction model of general anesthesia in adult patients.

Author:

Shui Xiaoqin1,Liu Min2,Liao Limei2

Affiliation:

1. West China Hospital of Sichuan University, Sichuan University

2. University of Electronic Science and Technology of China

Abstract

Abstract Backgroundː Post-induction hypotension (PIH) refers to arterial hypotension occurring within the first 20 minutes after anesthesia induction or from anesthesia induction to the beginning of surgery. Identifying high-risk patients with PIH is of great significance for medical staff to take corresponding preventive measures and formulating intervention plans. Therefore, this study aims to construct a PIH prediction model for patients undergoing general anesthesia (GA) and varify the performance of the model. It was hypothesized that we could create a prediction model with a sensitivity/specificity > 85%. Methodsː This is a cross-sectional, observational study performed in a tertiary hospital in southwest China, among 290 patients who underwent elective non-cardiac surgery under GA from March 2023 to May 2023. The data came from medical records and anesthesia information collection system. Variables included patient age, gender, heart rate (HR), body mass index (BMI), disease diagnosis, complications, drug use, Charlson comorbidity index (CCI), American society of anesthesiologists physical status classification (ASA), the last measured blood pressure (BP) in the ward, the BP before anesthesia induction, and the lowest BP during anesthesia induction. the lowest BP during anesthesia induction was measured by invasive measurement method. PIH was defined as a decrease of mean arterial blood pressure (MAP) during induction of more than 30% compared with the MAP measured before anesthesia induction. The data was divided into trainning set and validation set according to the ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) binary logistic regression was used for feature selection and model training. The area under the receiver operating characteristic curve (AUROC) was used to test these hypotheses. A calibration curve and the Hosmer-Lemeshow (H-L) chi-square test were used to evaluate the calibration degree of the model. Decision curve analysis (DCA) was used to evaluate the performance of the modeling in supporting clinical decision-making. The model was then visualized using a nomogram. Results PIH was presented in 8% patients in the training set and 10% in the test set. The predictors of this model included BMI, changes in MAP, pre-operative HR, and pre-operative use of angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs). For the training and test sets, the AUROC using LASSO regression was 0.894 [95% CI, (0.78, 1.00)] and 0.883 [95% CI, (0.718, 1.00)], with respective sensitivity (0.880 and 0.901) and specificity ( 0.875 and 0.889). The H-L test of calibration curve was 3.42 and 11.265, with respective p value 0.905 and 0.187. The DCA demonstrated that using the model obtained higher net benefit (NB) than not using it. This model composed of these four independent variables showed good calibration, and clinical efficiency, which is helpful for medical staff to identify patients with high risk of PIH and formulate corresponding prevention and intervention strategies Conclusions BMI, MAP change, HR, and ACEIs/ARBs were predictive of PIH by LASSO regression. This model composed of these four independent variables showed good discrimination, calibration, and clinical efficiency, which is helpful for medical staff to identify patients with high risk of PIH and formulate corresponding prevention and intervention strategies. The prediction and validation model with a sensitivity/specificity > 85% means the model was “successful”.

Publisher

Research Square Platform LLC

Reference59 articles.

1. Guo QL, Yao SL. Clinical anesthesiology. Beijing: People’s Medical Publishing House; 2014.

2. The possible mechanism of hypotension induced by propofol during anesthesia;Xiangyu W;Shanghai Medical.,2010

3. Comparison of circulatory disturbance induced by general anesthesia induced by fentanyl, sufentanil and remifentanil;Dilin X;Chongqing Medicine.,2015

4. Post-induction hypotension and early intraoperative hypotension associated with general anaesthesia;Sudfeld S;Br J Anaesth. Jul,2017

5. Incidence of intraoperative hypotension as a function of the chosen definition: literature definitions applied to a retrospective cohort using automated data collection;Bijker JB;Anesthesiology.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3