Cyberattacks Detection and Analysis in a Network Log System Using XGBoost with ELK Stack

Author:

Yang Chao-Tung1ORCID,Chan Yu-Wei2,Liu Jung-Chun Liu1,Kristiani Endah1,Lai Cing-Han1

Affiliation:

1. Tunghai University

2. Providence University

Abstract

Abstract The usage of artificial intelligence and machine learning methods on cyberattacks increasing significantly recently. For the defense method of cyberattacks, it is possible to detect and identify the attack event by observing the log data and analyzing whether it has abnormal behavior or not. This paper implemented the ELK Stack network log system (NetFlow Log) to visually analyze log data and present several network attack behavior characteristics for further analysis. Additionally, this system evaluated the extreme gradient enhancement (XGBoost), Recurrent Neural Network (RNN), and Deep Neural Network (DNN) model for machine learning methods. Keras was used as a deep learning framework for building a model to detect the attack event. From the experiments, it can be confirmed that the XGBoost model has an accuracy rate of 96.01% for potential threats. The full attack data set can achieve 96.26% accuracy, which is better than RNN and DNN models.

Publisher

Research Square Platform LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3