Influence of Uncertain Parameters on Machining Distortion of Thin-walled Parts

Author:

Li Xiaoyue1ORCID,Qi Hao,Tao Qiang,Li Liang

Affiliation:

1. qingdao daxue: Qingdao University

Abstract

Abstract Thin-walled parts refer to lightweight structural parts comprised of thin plates and stiffeners. During the machining process of thin-walled parts, machining distortion often occurs due to uncertain factors such as varying stiffness, cutting force, cutting temperature, residual stress and other factors. This paper studied the minimization of the failure probability of machining distortion by controlling the uncertainties of inputs. For this, a fuzzy inference model for the machining system was proposed to determine the effects of uncertain factors on the machining distortion errors, which was composed of rule frame and result frame. In the rule frame, machining parameters, outline size, and wall thickness were used as inputs. In the result frame, linear stiffness, cutter path, as well as cutting force were taken as the input parameters. The values of machining distortion were the output, taken into a threshold function. Comprehensive matching was defined to measure the importance of uncertain inputs to outputs. Machining distortion will exceed the specification (failure) with the increase in comprehensive matching. Therefore, the comprehensive matching index evaluates the effects of the uncertainties on the machining distortion and quantify the effects of given uncertain parameters. Two engineering examples were employed to illustrate the accuracy and efficiency of the proposed approach. It revealed that the comprehensive matching of cutting force to the failure probability of machining distortion was the maximum, 0.040, which was 12 to 13 times greater than that of linear stiffness or cutter path.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3