Evaluation and Prediction of Climatic parameters based on IoT system using Machine learning and Neural network algorithms

Author:

Brahmaiah Allacheruvu1,Srini Ramagalla2,Sunkari Savitha2

Affiliation:

1. Central University of South Bihar

2. National Remote Sensing Centre

Abstract

Abstract

This study presents an innovative method for integrating artificial intelligence/machine learning models with an Internet of Things (IoT) system for evaluating, validating and predicting climatic parameters. The prototype IoT system described herein is designed to remotely control demo-satellite power-enabled technologies while simultaneously capturing real-time environmental parameters such as air temperature, humidity, and atmospheric carbon dioxide (CO2) levels. These data are then stored in a dedicated server database. They are capable of interfacing with the Blynk IoT application for seamless remote-control access of demo-satellite and monitoring environmental parameters; However, the existing system suffers from low resolution and accuracy in data collection. To address this limitation, we propose high-resolution ground data for the implementation of AI/ML models to improve the accuracy of atmospheric air temperature and CO2 level predictions each algorithm's performance is assessed using metrics like Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Percentage Error (PE) and Accuracy percentage. Additionally, future predictions for time horizons of 1 month, 6 months, and 1 year are displayed graphically in the system's Graphical User Interface (GUI). This paper presents a comprehensive overview of the proposed system architecture, implementation details, experimental methodology, results analysis and predictions.

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. Smart Farm Monitoring via the Blynk IoT Platform;Peerasak Serikul;IEEE, Jan,2019

2. Datasheets, “NodeMCU ESP8266,” Apr. 2020. [Online]. Available: https://components101.com/development-boards/nodemcu-esp8266-pinout-features-and-datasheet

3. Datasheets, “DHT11–Temperature and Humidity Sensor,” Jul. 2021, [Online]. Available: https://components101.com/sensors/dht11-temperature-sensor

4. datasheets, “Air Quality Gas Sensor,” Mar. 2015. [Online]. Available: https://www.winsen-sensor.com/d/files/PDF/Semiconductor%20Gas%20Sensor/MQ135%20(Ver1.4)%20-%20Manual.pdf

5. IONOS, “XAMPP tutorial,” Mar. 2023. [Online]. Available: https://www.ionos.com/digitalguide/server/tools/xampp-tutorial-create-your-own-local-test-server/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3