Improving the adsorption capacity of graphene oxide. Effect of Ca2+ on tetracycline retention

Author:

Medina Florencia M. Onaga1,Avena Marcelo J.2,Parolo María E.3

Affiliation:

1. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET- Universidad Nacional del Comahue

2. Instituto de Química del Sur (INQUISUR), CONICET-Universidad Nacional del Sur

3. CONICET-Universidad Nacional del Comahue

Abstract

Abstract Tetracyclines (TCs) constitute a group of antibiotics that are commonly used to treat bacterial diseases, in veterinary medicine and as an additive in animal feed. This broad application has led to their accumulation in food products and the environment because sewage treatment plants cannot completely remove them. Therefore, the aim of this study was to synthesize graphene oxide (GO) and evaluate its TC adsorption properties in aqueous media. The effects of pH (between 2.5 and 11) and Ca2+ concentration (between 0 and 1M) were thoroughly investigated. Structural, textural, and electrokinetic properties of the prepared GO were determined by N2 adsorption/desorption, XRD, TEM, UV-vis, FTIR, XPS, thermogravimetry and electrophoretic mobility measurements. TC adsorption on GO is an interplay between the two main roles played by Ca2+: competitor or bridging cation. At low pH, there is cation exchange, and Ca2+ behaves as a competitor of the positively charged TC species, decreasing adsorption as calcium concentration increases. At high, the formation of Ca bridges between the surface and TC (GO-Ca2+-TC) is favored, increasing the adsorption of the antibiotic by increasing calcium concentration. Different combinations of Ca2+ and pH effects are important to improve the use of GO either as a pH-dependent and reversible TC adsorbent for decontamination or as pH-independent adsorbent for TC quantification with electrochemical sensors.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3