Efficient Parallel Memetic Algorithm to Rule Extraction in Data Mining

Author:

Oualid Dahmri1,Baba-Ali Ahmed Riadh1

Affiliation:

1. University of Sciences and Technology Houari Boumediene

Abstract

Abstract This is extension of my last publication [1] with more expermetation to explain how I choseed every variable in each algorithm and to present more clear results and discussions. we presents a parallel memetic algorithm (PMA) for solving the classification problem in the process of Data Mining. We focus our interest on accelerating the PMA. In most parallel algorithms, the tasks performed by different processors need access to shared data, this creates a need for communication, which in turn slows the performance of the PMA. In this work, the design of PMA with new replacement approach is presented.. This latter is a hybrid approach that uses both Lamarckian and Baldwinian approaches at the same time in order to reduce the quantity of information exchanged between processors and consequently to improve the speedup of the proposed algorithm. An extensive experimental study performed on the UCI Benchmarks proves the efficiency of the proposed PMA.

Publisher

Research Square Platform LLC

Reference19 articles.

1. Dahmri Oualid, Ahmed Riadh Baba-Ali « A New Parallel Memetic Algorithm to Knowledge Discovery in Data Mining ». ICSIBO 2016 : 87–101.

2. K. J. Cios, W. Pedryecz, R. W. Swinniarsky et L. A. Kurgan. « Data Mining : A Knowledge Discovery Approach .» Editions Springer Science. (2007).

3. A. K. Jain et R. C. Dubes. « Algorithms for clustering data.» Editions Prentice Hall Advanced Reference Series. (1988).

4. Johann Dréo, Alain Pétrowski, Patrick Siarry, Eric Taillard. « Métaheuristiques pour l’optimisation difficile ». Eyrolles, (2005).

5. Christian Blum, Andrea Roli. « Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison ». ACM Computing Survey, Vol. 35 No 3, (Sept. 2003).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3