A method for planning disaster risk management and calibrating disaster relief efforts: application to the 2009 and 2022 Tonga tsunamis

Author:

Thomas Bruce Enki Oscar1,Roger Jean2,Gunnell Yanni3,Ashraf Salman4

Affiliation:

1. Institute of Geodesy (GIS), University of Stuttgart, Stuttgart

2. Earth Structure and Processes, GNS Science, Lower Hutt

3. Université Lumière Lyon 2, CNRS UMR 5600, Bron

4. Data Science & Geohazards Monitoring, GNS Science, Lower Hutt

Abstract

Abstract Coastal communities are highly exposed to ocean- and climate-related hazards but often lack an accurate population and infrastructure database. On January 15, 2022 and for many days thereafter, the Kingdom of Tonga was cut off from the rest of the world by a destructive tsunami associated with the Hunga Tonga Hunga Ha’apai volcanic eruption. This situation was made worse by COVID-19-related lockdowns and no precise idea of the magnitude and pattern of destruction incurred. The occurrence of such events in remote island communities highlights the need for (1) precisely knowing the distribution of residential and public buildings, and (2) evaluating what proportion of those would be vulnerable to a tsunami. A GIS-based dasymetric mapping method, previously tested in New Caledonia for assessing and calibrating population distribution at high resolution, is improved and implemented in less than a day to jointly map population clusters and critical elevation contours based on runup scenarios, and is tested against destruction patterns independently recorded in Tonga after the two recent tsunamis of 2009 and 2022. Results show that 62% of the population of Tonga lives in well-defined clusters between sea level and the 15 m elevation contour. The patterns of vulnerability thus obtained for each island of the archipelago allow exposure and potential for cumulative damage to be ranked as a function of tsunami magnitude and source-area. By relying on low-cost tools and incomplete datasets for rapid implementation in the context of natural disasters, this approach works for all types of natural hazards, is easily transferable to other insular settings, can assist in guiding emergency rescue targets, and can help to elaborate future land-use planning priorities for disaster risk reduction purposes.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3