A crisis of lake hypoxia in the Anthropocene: The long-term effects of climate and nutrients

Author:

Soares Laura1ORCID,Jenny Jean-Philippe1,Desgué-Itier Olivia1,Barouillet Cécilia1,Bouffard Damien2,Casenave Céline3ORCID,Isabelle Domaizon4,Frossard Victor5,Hairston Nelson6ORCID,Lami Andrea7ORCID,Lemaire Bruno8ORCID,Many Gaël9,Perga Marie-Elodie10ORCID,Saulnier Georges-Marie11,Soulignac Frédéric12,Vinçon-Leite Brigitte13

Affiliation:

1. INRAE CARRTEL

2. Eawag

3. INRAE MISTEA

4. INRAE

5. Université Savoie Mont Blanc, INRAE

6. Department of Ecology & Evolutionary Biology

7. Water Research Institute, IRSA, CNR

8. AgroParis Tech

9. Université de Lausanne, Faculté des géosciences et de l'environnement

10. University of Lausanne

11. Université Savoie Mont Blanc, CNRS, EDYTEM

12. CIPEL

13. Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), École Nationale des Ponts et Chaussées

Abstract

Abstract Climate change is altering thermal stratification in lakes worldwide. Reduction in winter mixing lead to prolonged oxygen depletion, lasting for years to centuries, potentially becoming permanent. Although there is convincing evidence of lake deoxygenation globally, its duration, timing, and impacts over decadal to centennial timescales remain uncertain. Here, we introduce a novel model-data assimilation approach using 150 years of limnological and paleolimnological data to evaluate the anthropogenic impact and future of deep dissolved oxygen in Lake Geneva. We find that climate change has influenced winter mixing, with divergent effects on bottom oxygen concentrations before and after eutrophication. Over centennial timescales, eutrophication, not climate warming, triggered unprecedented bottom-water hypoxia. However, by 2100, climate change will be the main driver of hypoxia in Lake Geneva and similar lakes, even with reduced phosphorus concentrations. With climate change locking in the effects of phosphorus loading on hypoxia, the significance of reducing loading remains intact.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3