Multivariate Motion Patterns and Applications to Rainfall Radar Data

Author:

Fischer Svenja1,Oesting Marco2,Schnurr Alexander3

Affiliation:

1. Ruhr University Bochum

2. University of Stuttgart

3. University of Siegen

Abstract

Abstract The classification of movement in space is one of the key tasks in environmental science. Various geospatial data such as rainfall or other weather data, data on animal movement or landslide data require a quantitative analysis of the probable movement in space to obtain information on potential risks, ecological developments or changes in future. Usually, machine-learning tools are applied for this task, as these approaches are able to classify large amounts of data. Yet, machine-learning approaches also have some drawbacks, e.g. the often required large training sets and the fact that the algorithms are often seen as black boxes. We propose a classification approach for spatial data based on ordinal patterns. Ordinal patterns have the advantage that they are easily applicable, even to small data sets, are robust in the presence of certain changes in the time series and deliver interpretative results. They therefore do not only offer an alternative to machine-learning in the case of small data sets but might also be used in pre-processing for a meaningful feature selection. In this work, we introduce the basic concept of multivariate ordinal patterns and the corresponding limit theorem. A simulation study based on bootstrap demonstrates the validity of the results. The approach is then applied to two real-life data sets, namely rainfall radar data and the movement of a leopard. Both applications emphasize the meaningfulness of the approach. Clearly, certain patterns related to the atmosphere and environment occur significantly often, indicating a strong dependence of the movement on the environment. MSC Classification: 62M10 , 62H20 , 62F12 , 60F05 , 05A05 , 62G30

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3