Valorization of Capsicum annuum seed extract as an antifungal against Botrytis cinerea

Author:

Hajji-Hedfi Lobna1ORCID,Rhouma Abdelhak1ORCID,Al-Judaibi Awatif A.2,Hajlaoui Hichem1,Hajlaoui Fedi1,Abdel-Azeem Ahmed M3

Affiliation:

1. Regional Center for Agronomic Research of Sidi Bouzid: Centre Regional des Recherches Agricoles de Sidi Bouzid

2. Jeddah University: University of Jeddah

3. Suez Canal University Faculty of Science

Abstract

Abstract Botrytis cinerea Pers., the causal agent of gray mold, is an airborne pathogen that causes significant damage to tomato crops worldwide at all development stages and post-harvest. In this study, the aqueous extract of Capsicum annuum seeds was screened for its phytochemical constituents and assessed at various concentrations (10, 20, 30, and 60%) for antifungal activity in vitro. Selected biochemical, pathological, agronomical, physicochemical, and morphometrical traits were investigated to determine the effectiveness of applying the aqueous seed extract and salicylic acid either separately or in combination to tomato seeds and fruits in vivo. Phytochemical screening of the aqueous seed extract showed the presence of 2, 2-diphenyl-1-picrylhydrazyl, phenolic and flavonoid contents, quinic acid, protocatechuic acid, syringic acid, p-coumaric acid, trans-ferulic acid, rutin, quercetin-3-o-rhamonosic, kaempferol, naringenin, and apigenin at various concentrations. The findings suggested that the aqueous extract at a concentration of 60% was most efficient in vitro where mycelial growth was < 3.8 mm, mycelial growth inhibition was > 52%, and mycelial growth rate of < 1.05 mm/h. In vivo, the combined treatments of tomato seeds produced the greatest reduction in gray mold damage (disease severity index 8.67%) and the most favorable growth parameters of seedlings were chlorophyll a > 1.50 mg/g.f.Wt.; chlorophyll b > 1.76 mg/g.f. Wt.; total chlorophyll content > 3.26 mg/g.f.Wt.; seedling fresh weight > 0.43 g; seedling length > 12.43 cm, respectively. Combined preventive treatment applied to tomato fruits inoculated with B. cinerea resulted in the lowest disease severity (percentage of fruit area covered by gray mold < 33.33%; disease severity index < 46.67%) and the most favorable physicochemical attributes (water content < 98.28%; juice yield > 53.35%; pH < 3.59; titratable acidity > 1.37 g/10 ml juice; Brix degree > 4.73; nitrate content < 383.33 mg/kg; electrical conductivity < 2.47 mS/cm) and morphometrical attributes (fruit firmness > 3.03). The combined treatments resulted in the strongest activity of peroxidase (> 4.162 units/mg/min), ascorbate peroxidase (> 31.66 µmol/mg/min), and malondialdehyde (> 3.90 µmol/g) on the tomato fruits. The aqueous extract of C. annuum seeds combined with salicylic acid had positive effects in terms of inhibiting B. cinerea and is thus a promising and environmentally friendly alternative substitute for chemical fungicides towards sustainable agriculture under climate change.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3