Construction of Quantum Well surface from an Nb Surface doped Core-shell La-SrTiO3 Nanocubes for Photocatalytic Hydrogen Production

Author:

Fan Yuqi1,Zhang Guoliang2,Zhou Huiming1,Qiu Yang1,Wang Weiliang3,Dang Feng2

Affiliation:

1. Shandong Normal University

2. Shandong University

3. Qingdao University of Technology

Abstract

Abstract Perovskite oxide semiconductors represent as one of the most promising photocatalysts for water splitting for hydrogen production; however, they still suffer from low light harvesting efficiency and low quantum yield. Here, an interfacial super-assembly towards nanoscale quantum well core-shell structure is demonstrated as a conceptual novel strategy for the design of high-performance perovskite oxide photocatalyst. A quantum well core-shell structure composed of La-doped SrTiO3 core and Nb-doped SrTiO3 surface is synthesized. Experimental and theoretical simulation demonstrate that the Nb-doped shell with a thickness of ~ 1 nm enables a lower conduction band potential and the formation of quantum confinement effect on the surface, in which the excited electron can be excited from the La-doped SrTiO3 core to the Nb-doped surface and confined on the 2D Nb-doped surface for highly efficient electron-hole pair separation. The quantum well SrTiO3 (QW-SrTiO3) nanocubes exhibit a strong visible light absorption and remarkably prevent the recombination of photogenerated electron-hole pair through the surface quantum confinement effect. Using graphene (GR) as the electron acceptor, the quantum well SrTiO3 nanocubes display the highest photocatalytic H2 production rate of 14.69 mmol h− 1 g− 1, which is 78 times higher than that of pristine SrTiO3 nanocubes. Furthermore, QW-SrTiO3/GR hybrid also shows excellent stability for hydrogen evolution. The quantum well designed on the SrTiO3 nanoparticles provides an insight for creating novel photocatalysts to tackle environmental and sustainable energy issues.

Publisher

Research Square Platform LLC

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3