Synthesis and evaluation of fluorine-18 labelled tetrazines as pre-targeting imaging agents for PET

Author:

Schlein Eva1,Rokka Johanna1,Odell Luke R.1,Broek Sara Lopes van den1,Herth Matthias M.2,Battisti Umberto M.2,Syvänen Stina1,Sehlin Dag1,Eriksson Jonas1ORCID

Affiliation:

1. Uppsala Universitet

2. University of Copenhagen: Kobenhavns Universitet

Abstract

Abstract Background The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. Results The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. Conclusion This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.

Publisher

Research Square Platform LLC

Reference43 articles.

1. Specific uptake of an amyloid-β protofibril-binding antibody-tracer in AβPP transgenic mouse brain;Magnusson K;J Alzheimer’s Dis,2013

2. Pharmacokinetics, biodistribution and brain retention of a bispecific antibody-based PET radioligand for imaging of amyloid-β;Sehlin D;Sci Rep,2017

3. PET Imaging in Preclinical Anti-Aβ Drug Development;Syvänen S;Pharm Res,2022

4. Engineered antibodies: new possibilities for brain PET?;Sehlin D;Eur J Nucl Med Mol Imaging,2019

5. Lecanemab in Early Alzheimer’s Disease;Dyck CH;N Engl J Med,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3