Building Footprint Segmentation Using the Modified YOLOv8 Model

Author:

Falahatnejad Shahrzad1,Karami Azam1,Sharifirad Rabe’e2,Shirani Mojdeh2,Mehrabinejad Mohsen2,Khrasanimotlagh Mohammadhossein2,Soleymani Mohammadreza2

Affiliation:

1. Shahid Bahonar University

2. Kerman Gas Company

Abstract

Abstract

This paper proposes an enhanced YOLOv8 model specifically designed for precise building footprint segmentation. The model incorporates several key modifica- tions to achieve superior performance and efficiency. Firstly, a novel fusion layer integrates RGB image information with a Digital Elevation Model (DEM), enrich- ing feature representation and facilitating the distinction of building structures. Secondly, Depthwise Separable Convolution (DSConv) replaces standard convo- lutions throughout the backbone and head, leading to a more compact model with faster inference speed. Thirdly, Varifocal Loss (VFL) is employed as the clas- sification loss function, effectively addressing class imbalance issues prevalent in segmentation tasks. Our proposed model demonstrates significant improvements over three DeepLabv3+, SAM, and the original YOLOv8 state-of-the-art models. We achieve a precision of 91.11%, a recall rate of 89.71%, and a mAP (mean Average Precision) of 87.42%, surpassing all compared models in accuracy. Fur- thermore, the proposed model boasts a remarkably fast inference time of only 45.1 milliseconds per image, making it suitable for real-time applications.

Publisher

Research Square Platform LLC

Reference24 articles.

1. Building footprint segmentation using transfer learning: a case study of the city of melbourne. ISPRS Annals of the Photogrammetry;Neupane B;Remote Sens Spat Inform Sci,2022

2. Semantic segmentation-based building footprint extraction using very high-resolution satellite images and multi- source gis data;Li W;Remote Sens,2019

3. Some thoughts on deep learning enabling cartography;Tinghua A;Acta Geodaetica Cartogr Sin,2021

4. Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G (2018) Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1451–1460 Ieee

5. A survey of convolutional neu- ral networks: analysis, applications, and prospects;Li Z;IEEE Trans neural networks Learn Syst,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3