Towards engineering the perfect defect in high-performing permanent magnets

Author:

Giron Stefan1,Pollin Nikita2,Adabifiroozjaei Esmaeil1ORCID,Yang Yangyiwei3ORCID,Kovacs Andras4ORCID,Almeida Trevor5ORCID,Ohmer Dominik6,Uestuener Kaan6,Katter Matthias6,Radulov Iliya1,Dunin-Borkowski Rafal7ORCID,Farle Michael8ORCID,Durst Karsten9,Zhang Hongbin9ORCID,Alff Lambert3ORCID,Ollefs Katharina10ORCID,Xu Bai-Xiang11ORCID,Gutfleisch Oliver12,Molina-Luna Leopoldo13,Skokov Konstantin9ORCID,Gault Baptiste2ORCID

Affiliation:

1. TU Darmstadt

2. Max Planck Institute for Iron Research

3. Technische Universität Darmstadt

4. Forschungszentrum Juelich

5. University of Glasgow

6. vacuumschmelze

7. Forschungszentrum Jülich

8. UDE

9. Technical University of Darmstadt

10. Fakultät für Physik und Center für Nanointegration Duisburg-Essen

11. Technische Universität Darmstadt

12. Department of Material Science, Technical University of Darmstadt

13. Technical University Darmstadt

Abstract

Abstract Permanent magnets draw their properties from a complex interplay, across multiple length scales, of the composition and distribution of their constituting phases, that act as building blocks, each with their associated intrinsic properties 1. Gaining a fundamental understanding of these interactions is hence key to decipher the origins of their magnetic performance2 and facilitate the engineering of better-performing magnets, through unlocking the design of the “perfect defects” for ultimate pinning of magnetic domains3. Here, we deployed advanced multiscale microscopy and microanalysis on a bulk Sm2(CoFeCuZr)17 pinning-type high-performance magnet with outstanding thermal and chemical stability 4. Making use of regions with different chemical compositions, we showcase how both a change in the composition and distribution of copper, along with the atomic arrangements enforce the pinning of magnetic domains, as imaged by nanoscale magnetic induction mapping. Micromagnetic simulations bridge the scales to provide an understanding of how these peculiarities of micro- and nanostructure change the hard magnetic behaviour of Sm2(CoFeCuZr)17 magnets. Unveiling the origins of the reduced coercivity allows us to propose an atomic-scale defect and chemistry manipulation strategy to define ways toward future hard magnets.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3