Quantifying Thoracolumbar Fascia Deformation to Discriminate Acute Low Back Pain Patients and Healthy Individuals Using Ultrasound

Author:

Brandl Andreas1,Wilke Jan2,Horstmann Thomas3,Reer Rüdiger1,Egner Christoph4,Schmidt Tobias5,Schleip Robert3

Affiliation:

1. University of Hamburg

2. University of Klagenfurt

3. Technical University of Munich

4. Diploma Hochschule

5. MSH Medical School Hamburg

Abstract

Abstract

Reduced shear strain and deformability of the thoracolumbar fascia has been linked to low back pain. A number of ultrasound examination methods have been developed for laboratory rather than clinical practice. The aim of this study was to examine the reliability and discriminative validity (patients vs. healthy individuals) of an ultrasound (US) measurement method for the quantification of thoracolumbar fascia deformation (TLFD). A Cross-sectional study with US assessment and rater blinding was conducted in a manual therapy clinic and a university laboratory. 16 acute low back pain (aLBP) patients and 15 healthy individuals performed a standardized trunk extension task. US measurements of TLFD were carried out independently by two raters by imaging the TLF in the starting and ending positions of the movement. Intrarater and interrater reliability were calculated using intraclass correlation coefficients (ICCs) and minimal detectable changes (MDC) were calculated. Receiver operating characteristic (ROC) curve analysis was used to determine the cut-off for TLFD to discriminate the study groups. Kappa statistics were performed to assess rater agreement in discrimination. The intrarater ICC was .92 with an MDC of 5.54 mm and the interrater ICC was .78 with an MDC of 8.70 mm (all p < .001). The cut-off for TLFD was 6 mm with a sensitivity of 100% and a specificity of 93.75%. The raters agreed with a κ of 0.74 (p < .001). The results showed that the reliability of the US method for assessing TLFD is moderate to excellent, and the ability to discriminate aLBP patients from healthy individuals is moderate. The method could be used to capture an additional parameter in morphological aLBP screenings.

Publisher

Springer Science and Business Media LLC

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3