Abstract
Objective
This study applies predictive analytics to identify patients at risk of missing appointments at a novel post-discharge clinic (PDC) in a large academic health system. Recognizing the critical role of appointment adherence in the success of new clinical ventures, this research aims to inform future targeted interventions to increase appointment adherence.
Materials and Methods
We analyzed electronic health records (EHR) capturing a wide array of demographic, socio-economic, and clinical variables from 2,168 patients with scheduled appointments at the PDC from September 2022 to August 2023. Logistic regression, decision trees, and XGBoost algorithms were employed to construct predictive models for appointment adherence.
Results
The XGBoost machine learning model outperformed logistic regression and decision trees with an area under the curve of 72% vs. 65% and 67%, respectively, in predicting missed appointments, despite limited availability of historical data. Key predictors included patient age, number of days between appointment scheduling and occurrence, insurance status, marital status, and mental health and cardiac disease conditions.
Discussion
Findings underscore the potential of machine learning predictive analytics to significantly enhance patient engagement and operational efficiency in emerging healthcare settings. Optimizing predictive models can help balance the early identification of patients at risk of non-adherence with the efficient allocation of resources.
Conclusion
The study highlights the potential value of employing machine learning techniques to inform interventions aimed at improving appointment adherence in a post-discharge transition clinic environment.