Affiliation:
1. Gangnam Severance Hospital
Abstract
Abstract
Background:
Malalignment in the lower limb structure occurs due to various causes. Accurately evaluating limb alignment in situations where malalignment needs correction is necessary.
Purpose
To create an automated support system to evaluate lower limb alignment by quantifying mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), and joint line convergence angle (JLCA) on full-length weight-bearing radiographs of both lower extremities.
Materials and Methods
In this retrospective study, we analysed 404 radiographs from one hospital for algorithm development and testing and 30 radiographs from another hospital for external validation. The performance of segmentation algorithm was compared to that of manual segmentation using the dice similarity coefficient (DSC). The agreement of alignment parameters was assessed using the intraclass correlation coefficient (ICC) for internal and external validation. The time taken to load the data and measure the four alignment parameters was recorded.
Results
The segmentation algorithm demonstrated excellent agreement with human-annotated segmentation for all anatomical regions (average similarity: 89–97%). Internal validation yielded good to very good agreement for all the alignment parameters (ICC ranges: 0.7213- 0.9865). Interobserver correlations between manual and automatic measurements in external validation were good to very good (ICC scores: 0.7126-0.9695). The computer-aided measurement was 3.44 times faster than was the manual measurement.
Conclusion
Our deep learning-based automated measurement algorithm accurately quantified lower limb alignment from radiographs and was faster than manual measurement.
Publisher
Research Square Platform LLC