Trimethylamine N-oxide / SREBP2 pathway is involved in sleep deprivation-induced cognitive dysfunction through regulating astrocytic cholesterol metabolism

Author:

Zhu Shan1,Wang Yue2,Li Yansong1,Li Na1,Zheng Yige3,Li Qiao1,Guo Hongyan1,Sun Jianyv1,Zhai Qian1,Wang Qiang1

Affiliation:

1. First Affiliated Hospital of Xi'an Jiaotong University

2. Second Affiliated Hospital of Xi'an Jiaotong University

3. The Second Clinical Medical College, Shaanxi University of Chinese Medicine

Abstract

Abstract Sleep deprivation (SD) contributes to cognitive impairment. Astrocytic cholesterol biosynthesis is crucial for brain cholesterol homeostasis and cognitive function. However, the underlying mechanism of astrocytic cholesterol metabolism in SD-induced cognitive impairment has not been fully explored. Trimethylamine N-oxide (TMAO), a product of liver flavin-containing monooxygenase-3 (FMO3), has been shown to be increased in the urine of sleep-deprived humans and implicated with peripheral cholesterol metabolism. Nevertheless, how TMAO affects brain cholesterol metabolism remains unclear. In our study, increased FMO3 and brain TMAO levels were observed in the SD mice and elevated levels of TMAO were confirmed to lead to SD-induced cognitive dysfunction. In addition, we found that the expression of sterol regulatory element-binding protein 2 (SREBP2) is decreased in the brain of SD mice, resulting in the reduction in brain cholesterol synthesis, which in turn causes synaptic damage. Moreover, we demonstrated that TMAO inhibits the expression of SREBP2 by direct action. In contrast, FMO3 inhibitor 3,3'-diindolylmethane (DIM) alleviates SD-induced cognitive impairment by targeting the liver-brain axis. In conclusion, our study revealed that TMAO / SREBP2 pathway is involved in memory impairment in SD mice through deregulating astrocytic cholesterol metabolism.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3