The role of moisture and salt distribution in the weathering of the medieval cave town of Uplistsikhe, Georgia

Author:

Sass Oliver1,Heil Stefanie2

Affiliation:

1. University of Bayreuth

2. University of Graz

Abstract

Abstract

Knowledge of salt and moisture distribution is a key factor for understanding rock decay at cultural heritage sites. The cave town of Uplistsikhe in Georgia, carved from sandstone in late bronze age to medieval times, suffers from progressive scaling and flaking processes. Multi-method investigations of rock moisture and salt distribution were carried out in order to better understand the patterns of decay. Salt distribution was investigated using drill dust samples and paper pulp poultices; moisture was determined by 2D-resistivity and handheld microwave sensors, supplemented by infrared thermography. The combined results from the different methods revealed a complex pattern of salt and moisture distribution. An most sites, K2SO4 (arcanite) and its hydrates dominate, sometimes in combination with CaSO4 (gypsum). At one site (Grandhall), halite (NaCl) and niter (KNO3) prevail. Sulphates are assumed to be a legacy of air pollution; origin of halite and niter remains unsolved but might be due to concrete reinforcements. Two main sources of moisture were evidenced depending on season and spatial situation: (1) Condensation of air humidity at cool cave backwalls in spring (combined with and aided by salt efflorescence), evidenced by 2D-resistivity and infrared thermography; (2) seepage along joints particularly at the cave backwalls and roofs, evidenced by handheld microwave sensors. Further investigations should focus on identifying seepage pathways and on clarifying the origin of destructive halite and nitrates.

Publisher

Research Square Platform LLC

Reference57 articles.

1. Heritage hydrology: a conceptual framework for understanding water fluxes and storage in built and rock-hewn heritage;Sass O;Herit Sci,2022

2. Diagnosis of weathering damage on rock-cut monuments in Petra, Jordan;Heinrichs K;Env Geol,2008

3. Honeycomb weathering of sandstone outcrops at Al-Hijr (Mada'in Salih), Saudi Arabia;Saleh M;Egypt J Archaeol Restor Stud,2013

4. Weathering rates of a sandstone structure in a semi arid environment: a case study of the ancient city of Pingyao (world cultural heritage), China;Zhang Z;Bull Eng Geol Environ,2011

5. Goudie A, Viles H. Salt weathering hazards. Chichester: Wiley; 1997.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3