Identification of genes involved in the tomato root response to Globodera rostochiensis parasitism under varied light conditions

Author:

Matuszkiewicz Mateusz1ORCID,Święcicka Magdalena1,Koter Marek1,Filipecki Marcin1ORCID

Affiliation:

1. Warsaw University of Life Sciences: Szkola Glowna Gospodarstwa Wiejskiego w Warszawie

Abstract

Abstract

Understanding the intricate interplay between abiotic and biotic stresses is crucial for deciphering plant responses and developing resilient cultivars. Here, we investigate the combined effects of elevated light intensity and nematode infection on tomato seedlings. Chlorophyll fluorescence analysis revealed significant enhancements in PSII quantum yield and photochemical fluorescence quenching under high light conditions. qRT-PCR analysis of stress-related marker genes exhibited differential expression patterns in leaves and roots, indicating robust defense and antioxidant responses. Despite root protection from light, roots showed significant molecular changes, including down-regulation of genes associated with oxidative stress and up-regulation of genes involved in signalling pathways. Transcriptome analysis uncovered extensive gene expression alterations, with light exerting a dominant influence. Notably, light and nematode response synergistically induced more differentially expressed genes than individual stimuli. Functional categorization of differentially expressed genes upon double stimuli highlighted enrichment in metabolic pathways, biosynthesis of secondary metabolites, and amino acid metabolism, whereas the importance of specific pathogenesis related pathways decreased. Overall, our study elucidates complex plant responses to combined stresses, emphasizing the importance of integrated approaches for developing stress-resilient crops in the face of changing environmental conditions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3