Evapotranspiration estimation using high-resolution aerial imagery and pySEBAL for processing tomatoes

Author:

Peddinti Srinivasa Rao1,Nicolas Floyid1,Raij-Hoffman Iael1,Kisekka Isaya1

Affiliation:

1. University of California

Abstract

Abstract The utilization of high-resolution aerial imagery for assessing actual crop evapotranspiration (ETa) holds the potential to optimize the use of limited water resources in agriculture. Despite this potential, there is a shortage of information regarding the effectiveness of energy balance algorithms, initially designed for satellite remote sensing, in estimating ETa using aerial imagery. This study addresses this gap by employing the remote sensing model pySEBAL (Surface Energy Balance Algorithm for Land) in conjunction with high-resolution aerial imagery to estimate ETa for processing tomatoes. Throughout the 2021 growing season, an aircraft captured multispectral and thermal imagery over a processing tomato field near Esparto, California. Simultaneously, an eddy covariance flux tower within the field measured high-frequency turbulent fluxes and low-frequency biometeorology variables essential for evaluating the energy balance. The comprehensive assessment of energy balance components, including ETa, yielded compelling evidence that pySEBAL accurately estimated ETa at high spatial resolution. The root mean square error (RMSE) for various energy balance components were as follows: 33 Wm− 2 for latent heat flux, 29 Wm− 2 for sensible heat flux, 24 Wm− 2 for net radiation, and 10 Wm− 2 for soil heat flux. Additionally, ETa exhibited an RMSE of 0.26 mmd− 1. Notably, all components demonstrated an R2 exceeding 0.92. Moreover, the spatial mapping of ETa across the processing tomato field visually depicted the spatial variability associated with irrigation scheduling, crop development, areas affected by disease, and soil heterogeneity. This research underscores the value of high resolution spatial aerial imagery and pySEBAL algorithm for estimating ETa variability in the field, a crucial aspect for guiding precision irrigation management and ensuring the optimal use of limited water resources in agriculture.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3