Development of a novel treatment based on PKMYT1 inhibition for cisplatin-resistant bladder cancer with miR-424-5p-dependent cyclin E1 amplification

Author:

Fukumoto Wataru1,Okamura Shunsuke1,Tamai Motoki1,Arima Junya1,Kawahara Ichiro1,Fukuda Ikumi1,Mitsuke Akihiko1,Sakaguchi Takashi1,Sugita Satoshi1,Matsushita Ryosuke1,Tatarano Shuichi1,Yamada Yasutoshi1,Nakagawa Masayuki1,Enokida Hideki1,Yoshino Hirofumi1

Affiliation:

1. Kagoshima University

Abstract

Abstract Background: Chemotherapy including cisplatin is recommended for the treatment of advanced bladder cancer, but its effectiveness is limited due to the acquisition of drug resistance. Although several mechanisms of cisplatin resistance have been reported, there are still many unknowns, and treatment of cisplatin-resistant bladder cancer remains difficult. Accordingly, in this study, we aimed to identify and characterize microRNAs involved in cisplatin resistance. Methods: Small RNA sequencing analysis was performed to search for microRNAs related to cisplatin resistance. The identified microRNAs were then characterized using gain-of-function studies, sensitivity analysis, target gene analysis, and cellular assays. Results: We identified miR-424-5pas a candidate microRNA that was downregulated in cisplatin-resistant strains compared with parental strains. Notably, in gain-of-function studies, miR-424-5psuppressed the proliferative ability of cisplatin-resistant bladder cancer (CDDP-R BC). Furthermore, miR-424-5p restored sensitivity to cisplatin. RNA sequence analysis revealed seven candidate genes targeted by this microRNA. Among them, cyclin E1 (CCNE1) was chosen for subsequent analyses because its expression was upregulated in cisplatin-resistant cells compared with parental cells and because recent studies have shown that CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Therefore, we performed functional analysis using the PKMYT1 inhibitor RP-6306 and demonstrated that RP-6306 inhibited cell growth through suppression of mitotic entry and restored cisplatin sensitivity in CDDP-R BC. Conclusions: Overall, our findings provided insights into the development of novel therapeutic strategies for CDDP-R BC.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3