Land use changes result in increased phylogenetic clustering and preferential loss of species-rich sites for Michigan floral assemblages.

Author:

Figueroa Héctor Fox1,Grady CJ2,Cortez Maria Beatriz de Souza3,Beach Jim2,Stewart Aimee2,Soltis Douglas E.3,Soltis Pamela S.3,Smith Stephen A.1

Affiliation:

1. University of Michigan–Ann Arbor

2. University of Kansas

3. University of Florida

Abstract

Abstract Distribution models are widely used to understand landscape biodiversity patterns, facilitate evolutionary and ecological studies, and for making informed conservation decisions. While it is common to examine consequences of climate change, impacts of land use on distributions, a major factor in limiting ranges and corridors between populations, are less well understood. Here, we use distribution models to quantify changes in biodiversity due to land use for Michigan floral assemblages. We leveraged a distribution model dataset (1930 species) integrated with dated phylogenetic information and USGS land use maps to parse Michigan areas with unsuitable habitat. Additionally, we quantify the degree of high-quality habitat lost for each species, identifying those most strongly impacted by land use changes. Approx. 39% of Michigan terrestrial habitat fell within “unsuitable” land use categories. Sites predicted to harbor the most species based on climatic variables were those sites that lost the greatest proportion due to land use changes. Further, excluded sites were preferentially those composed of more phylogenetically even communities. Overall, the impact of land use changes on community species richness was the preferential loss of sites with the predicted highest biodiversity. For phylodiversity metrics, land use changes increased the degree of community phylogenetic clustering. This results in overall decreased phylodiversity, leading to assemblages less equipped to respond to rapid climatic changes. Our results confirm land use to be a major, but somewhat overlooked, factor impacting local diversity dynamics and illustrate how local-scale land use impacts regional-scale richness and phylodiversity patterns, likely leading to increased community fragility.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3