A Deep Learning Based Methods for Forecasting Gold Price with Respect to Pandemics

Author:

Khani Mahtab Mohtasham1ORCID,Vahidnia Sahand2ORCID,Abbasi Alireza2ORCID

Affiliation:

1. Istanbul Technical University

2. University of New South Wales

Abstract

Abstract The spread of COVID-19 in the world had a devastating impact on the world economy, trade relations, and globalization. As the pandemic advances and new potential pandemics are on the horizon, a precise analysis of recent fluctuations of trade becomes necessary for international decisions and controlling the world in similar crisis. The COVID-19 pandemic made a new pattern of trade in the world and affected how businesses work and trade with each other. It means that every potential pandemic or any unprecedented event in the world can change the market rules. This research develops a novel model to have a proper estimation of the stock market values with respect to COVID-19 dataset using long short-term memory networks (LSTM).The nature of the features in each pandemic is totally different, thus, prediction results for a pandemic by a specific model cannot be applied to other pandemics. Hence, recognising and extracting the features which affect the pandemic is in the highest priorities. In this study, we develop a framework, providing a better understanding of the features and feature selection. This study is based on a preliminary analysis of such features for enhancing forecasting models' performance against fluctuations in the market.Our forecasts are based on the market value data and COVID-19 pandemic daily time-series data (i.e. the number of new cases). In this study, we selected Gold price as a base for our forecasting task which can be replaced by any other markets. We have applied Convolutional Neural Networks (CNN) LSTM, Vector Out-put Sequence LSTM, Bidirectional LSTM, and Encoder-Decoder LSTM on our dataset and our results achieved an MSE of 6.0e-4, 8.0e-4, and 2.0e-3 on the validation set respectfully for one day, two days, and 30 days predictions in advance which is outperforming other proposed method in the literature.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gold Price Forecasting Using Machine Learning Techniques: Review of a Decade;Computational Intelligence in Pattern Recognition;2021-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3