A Novel Animal Model of Osteonecrosis of the Femoral Head Based on 3D Printing Technology

Author:

Li Yiyang1,Zhang Jiewen1,Zhao Yiwei1,Duan Xudong1,Cao Ruomu1,Guan Huanshuai1,Wu Zidong1,Xing Fangze1,Li Heng1,Wang Kunzheng1,Tian Run1,Yang Pei1

Affiliation:

1. Second Affiliated Hospital of Xi'an Jiaotong University

Abstract

Abstract Background Osteonecrosis of the femoral head (ONFH) is a common orthopedic disease that is characterized by the interruption of blood supply to the femoral head. This leads to ischemia of the internal tissues, subchondral bone fractures, necrosis, and ultimately, the collapse of the weight-bearing portion of the femoral head, resulting in severe functional impairment, pain, and even disability of the hip joint. Currently, available animal models of ONFH are limited in their ability to accurately replicate the natural progression of the disease. Therefore, there is a need for the development of a new animal model that can better simulate the localized pressure on the human femoral head to facilitate research related to ONFH.Method In this study, we have developed a novel method for modeling ONFH that incorporates stress factors into the modeling process using 3D printing technology and principles of biomechanics. 36 animals were randomly assigned to six groups and received either a novel modeling technique or traditional hormone induction. Following an 8-week treatment period, Micro CT scans and histological evaluations were conducted to assess tissue outcomes.Results The new model effectively replicates the pathological features of ONFH, including femoral head collapse, with a large number of empty bone lacunae observed, cartilage defects, and subchondral bone fractures in the subchondral bone region. Furthermore, the new model shows the ability to simulate the progression of the disease, making it a valuable tool for research in this field.Conclusion In conclusion, our study provides evidence that the new ONFH model is a useful tool for simulating the disease and can contribute to the development of better treatment strategies for this debilitating condition. It holds great promise for advancing our understanding of the pathogenesis of ONFH and the potential therapeutic interventions for this challenging clinical problem.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3