Vibroscape analysis reveals acoustic niche overlap and plastic alteration of vibratory courtship signals in ground-dwelling wolf spiders

Author:

Choi Noori1,Miller Pat,Hebets Eileen2

Affiliation:

1. Max Planck Institute of Animal Behavior

2. University of Nebraska-Lincoln

Abstract

Abstract Soundscape ecology has enabled researchers to investigate natural interactions among biotic and abiotic sounds as well as their influence on local animals. To expand the scope of soundscape ecology to encompass substrate-borne vibrations (i.e. vibroscapes), we developed methods for recording and analyzing sounds produced by ground-dwelling arthropods to characterize the vibroscape of a deciduous forest floor using inexpensive contact microphone arrays followed by automated sound filtering and detection in large audio datasets. Through the collected data, we tested the hypothesis that closely related species of Schizocosa wolf spider partition their acoustic niche. In contrast to previous studies on acoustic niche partitioning, two closely related species - S. stridulans and S. uetzi - showed high acoustic niche overlap across space, time, and/or signal structure. Finally, we examined whether substrate-borne noise, including anthropogenic noise (e.g., airplanes) and heterospecific signals, promotes behavioral plasticity in signaling behavior to reduce the risk of signal interference. We found that all three focal Schizocosa species increased the dominant frequency of their vibratory courtship signals in noisier signaling environments. Also, S. stridulans males displayed increased vibratory signal complexity with an increased abundance of S. uetzi, their sister species with which they are highly overlapped in the acoustic niche.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3