Metallothionein gene deficiency facilitates the differentiation of C2C12 myoblasts into slow-twitch myotubes

Author:

Kadota Yoshito1,Yamanokuchi Ryo1,Ohnishi Nodoka1,Matsuoka Mami1,Kawakami Takashige1,Sato Masao1,Suzuki Shinya1

Affiliation:

1. Tokushima Bunri University

Abstract

Abstract Metallothionein (MT) 1 and 2 are ubiquitously expressed cysteine-rich, low molecular weight proteins. MT expression is upregulated in skeletal muscle during aging. MTs also play role in multiple types of skeletal muscle atrophy. Meanwhile, it has been reported that MT1 and MT2 gene deficiency increases myogenesis in MT knockout (MTKO) mice. However, little is known about the effect of MTs on muscle formation and atrophy. In this study, we investigated the effect of MT1 and MT2 gene knock-out using the CRISPR-Cas9 system in an in vitro skeletal muscle differentiation model (C2C12 cell line). MT deficiency promoted myogenic differentiation and myotube formation in C2C12 cells. Muscle-specific transcription factors MyoD and myogenin were found to be upregulated at the late stage of myotube differentiation inMTKO cells. Furthermore, the fast-twitch myosin heavy chain (MyHC) protein expression was similar in MTKO and mock-transfected myotubes, but slow-MyHC expression was higher in MTKO cells than in mock cells. The MT gene deletion did not affect the number of fast MyHC-positive myotubes but increased the number of slow MyHC-positive myotubes. Treatment with the antioxidant N-acetylcysteine (NAC) inhibited the increase in the number of slow MyHC-positive myotubes as well as slow-MyHC expression in MTKO cells. In contrast, NAC treatment did not alter the number of fast MyHC-positive myotubes or the expression of fast-MyHC in MTKO cells. These results suggest that the antioxidant effects of MTs may be involved in slow-twitch myofiber formation in skeletal muscle.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3