Application of PCA-Kmeans method-based BP neural network to the prediction and optimization studies in S ZORB Sulfur Removal Technology

Author:

Geng Xiaoyi1ORCID,Zhang Guangcheng1ORCID,Wang Xin1ORCID,Song Bingyan1ORCID,Chen Yu1ORCID

Affiliation:

1. University of Shanghai for Science and Technology

Abstract

Abstract In this paper, the modeling of predicting the gasoline octane number and sulfur content in S ZORB Sulfur Removal Technology (SRT) is established. In the modelling, the principal component analysis (PCA) and unsupervised K-means clustering algorithm were initially integrated together to determine the key variables that affect the octane number and sulfur content of the product. With the selected key variables, the backpropagation neural network prediction models of the product octane number and sulfur content were established, trained and tested. Moreover, the mean accuracy of the prediction error within 0.15 and 0.3 were 94% and 99%, respectively. Besides the prediction of output of the S ZORB SRT Reactor, a multi-variable random walk optimization method was also proposed and investigated to reduce the octane loss, which was expected to be reduced by more than 30%, during desulfurization of fluid catalytic cracking gasoline in the S ZORB SRT Reactor, meanwhile the sulfur content stayed relatively stable which was less than 5 ppm. The results of the proposed models are reliable and could be applied into the real industrialization, which are beneficial with both the efficiency of economy and environmental protection.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3