Enhanced Methanolysis of Waste PET for Sustainable Production of Dimethyl Terephthalate and Cyclic Arylboronic Esters

Author:

Mei Qingqing1ORCID,Zhang Minghao1,Yu Yunkai1,Yan Binghui1,Song Xiuju1,Liu Yu1,Feng Yixiong1,Wu Weixiang2ORCID,Chen Baoliang3ORCID,Han Buxing4ORCID

Affiliation:

1. Zhejiang University

2. College of Environmental and Resource Sciences, Zhejiang University

3. Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University

4. Institute of Chemistry, Chinese Academy of Sciences

Abstract

Abstract Developing efficient and cost-effective methodologies for high value-added conversion of waste plastic delivers substantial environmental and economic benefits. Herein, we develop a novel approach utilizing boric acid in the methanolysis of waste polyethylene terephthalate (PET) to derive pure dimethyl terephthalate (DMT) and boronic acid esters through in-situ capture of ethylene glycol (EG). It not only upcycles waste PET but also eliminates intricate EG purification processes. Catalyzed by magnalium-aluminum-layered double oxides (Mg4Al1-LDO), this method achieved 100% conversions of PET with 96% and 100% yields of arylboronic esters and DMT, respectively. Kinetic studies and in-situ Fourier-transform infrared spectroscopy (FT-IR) demonstrated the pivotal role of the monodentate methoxy species, generated through the interaction of medium basic Mg–O ion pairs and methanol. This method demonstrates applicability for the upcycling of assorted discarded PET wastes, polyesters, and polycarbonates with EG units, highlighting its potential as a comprehensive solution for waste plastic management.

Publisher

Research Square Platform LLC

Reference48 articles.

1. The global threat from plastic pollution;MacLeo M;Science,2021

2. Production, use, and fate of all plastics ever made;Geyer R;Sci. Adv.,2017

3. Fully lignocellulose-based PET analogues for the circular economy;Wu XY;Nat. Commun.,2022

4. Microplastics affect sedimentary microbial communities and nitrogen cycling;Seeley ME;Nat. Commun.,2020

5. Microplastic in terrestrial ecosystems;Rillig MC;Science,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3