Forecasting Short-Term Water Demands with an Ensemble deep learning Model for a Water Supply System

Author:

Liu Jing1,Zhou Xinlei1,Xu Yueping1

Affiliation:

1. Zhejiang University College of Civil Engineering and Architecture

Abstract

Abstract Short-term water demand forecasting is crucial for constructing intelligent water supply system. There are plenty of useful models built to address this issue. However, there are still many challenging problems, including that the accuracies of the models are not high enough, the complexity of the models makes them hard for wide use in reality and the capabilities of models to catch peaks still have much room for improvement. In order to solve these problems, we proposed an ensemble deep learning model named STL-Ada-LSTM for daily water demand forecast by combining STL method with AdaBoost-LSTM model. After data preprocessing, the smoothed series is decomposed by STL to gain three input series. Then, several LSTM models are integrated by the AdaBoost algorithm to construct the ensemble deep learning model for water demand forecast. At last, the superiority of the proposed model is demonstrated by comparing with other state-of-art models. The proposed method is applied for water demand forecast using daily datasets from two representative water plants in Yiwu, East China. All models are assessed by mean absolute scaled error (MAE), mean absolute percentage error (MAPE), mean square error (MSE), root mean square error (RMSE), coefficient of determination (R2) and Akaike information criterion (AIC). The results show that the proposed model not only enhances the accuracy of the forecast, but also improves the stability and conciseness, which make it a practical daily water demand forecast model.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3