DeepLearning-EndoCancer: A Data Enhancement Framework Improved Endometrial Cancer Diagnostic Accuracy

Author:

Luo Yi1,Yang Meiyi2,Liu Xiaoying3,Qin Liufeng3,Yu Zhengjun4,Gao Yunxia5,Xu Xia6,Cha Guofen7,Zhu Xuehua8,Chen Gang4,Wang Xue3,Cao Lulu3,Zhou Yuwang3,Fang Yun3

Affiliation:

1. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China

2. University of Electronic Science and Technology of China

3. The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital

4. Kaihua County People's Hospital

5. The Second People's Hospital of Quzhou

6. Changshan County People's Hospital

7. People's Hospital of Quzhou Kecheng

8. Quzhou Maternal And Child Health Care Hospital

Abstract

Abstract

Objective This study sought to enhance the precision of endometrial lesion categorization in ultrasound imagery via a data enhancement framework base on deep learning (DL), addressing diagnostic accuracy challenges and contributing to future research. Materials and Methods Our study gathered ultrasound image datasets from 734 patients across six hospitals. We devised a data enhancement framework including Image Features Cleaning and Soften Label, validated across multiple DL models including ResNet50, DenseNet169, DenseNet201, and ViT-B. For optimal performance, we proposed a hybrid model integrating convolutional neural network (CNN) and transformer architectures to predict lesion types. Results The implementation of our novel strategies resulted in a substantial accuracy enhancement in the model. The final model achieved an accuracy of 0.809 and a macro-AUC of 0.911, underscoring DL's potential in endometrial lesion ultrasound image classification. Conclusion We successfully developed a data enhancement framework to accurately classify endometrial lesion in ultrasound images. The integration of anomaly detection, data cleaning, and soften label strategies enhanced the model's comprehension of lesion image features, thereby boosting its classification capacity. Our research offers valuable insights for future studies and lays the foundation for the creation of more precise diagnostic tools.

Publisher

Research Square Platform LLC

Reference26 articles.

1. Endometrial cancer;Amant F;Lancet,2005

2. The clinical characteristics of endometrial cancer with extraperitoneal metastasis and the value of surgery in treatment;Guo J;Technol. Cancer Res. Treat.,2020

3. Ultrazvukový staging časných stadií karcinomu endometria, analýza vlastního souboru za období let 2012–2016 [Ultrasound staging of stage I-II endometrial cancer, analysis of own file in the years 2012–2016];Míka O;Ceska Gynekol,2017

4. Ultrasound detection of endometrial cancer in women with postmenopausal bleeding: systematic review and meta-analysis;Long B;Gynecol Oncol,2020

5. Role of Three-Dimensional Ultrasound in Gynecology;Turkgeldi E;J. Obstet. Gynecol. India,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3