Deep learning pose detection model for sow locomotion

Author:

Paula Tauana Maria Carlos Guimarães1,Sousa Rafael Vieira1,Sarmiento Marisol Parada1,Kramer Ton2,Sardinha Edson José Souza1,Sabei Leandro1,Machado Júlia Silvestrini1,Vilioti Mirela1,Zanella Adroaldo1

Affiliation:

1. University of São Paulo (USP)

2. Zinpro Corporation

Abstract

Abstract Lameness affects animal mobility, causing pain and discomfort. Lameness in early stages often goes undetected due to a lack of observation, precision, and reliability. Automated and non-invasive systems offer precision and detection ease and may improve animal welfare. This study was conducted to create a repository of images and videos of sows with different locomotion scores and develop a computer vision model for automatically identifying and tracking specific points on the sow's body to facilitate lameness detection using deep learning. The video database was collected on a pig farm with a scenario built to allow filming of sows in locomotion with different lameness scores. Two stereo cameras were used to record 2D video images. Thirteen locomotion experts assessed the videos using the Locomotion Score System developed by Zinpro Corporation. From this annotated repository, computational models were trained and tested using the open-source deep learning-based animal pose tracking framework SLEAP (Social LEAP Estimates Animal Poses). The top-performing models were constructed using the LEAP architecture to accurately track 6 (lateral view) and 10 (dorsal view) skeleton keypoints. The architecture achieved average precisions values of 0.90 and 0.72, average distances of 6.83 and 11.37, and similarities of 0.94 and 0.86 for the lateral and dorsal views, respectively. These computational models are proposed as a Precision Livestock Farming tool and method for identifying and estimating postures in pigs automatically and objectively. The 2D image repository with different pig locomotion scores can be used as a tool for teaching and research. Based on our skeleton keypoint classification results, an automatic system could be developed. This could contribute to the objective assessment of locomotion scores in sows, improving their welfare.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3