Production routes to bio-acetic acid: Life cycle assessment

Author:

Budsberg Erik1ORCID,Morales-Vera Rodrigo2,Crawford Jordan3,Bura Renata1,Gustafson Rick1

Affiliation:

1. University of Washington School of Environmental and Forest Sciences

2. Catholic University of Maule

3. AECOM Technology Corp

Abstract

Abstract Background: Similar to biofuels, numerous chemicals produced from petroleum resources can also be made from biomass. In this research we investigate cradle to biorefinery exit gate life cycle impacts of producing acetic acid from poplar biomass using a bioconversion process. A key step in developing acetic acid for commercial markets is producing a product with 99.8% purity. This process has been shown to be potentially energy intensive and in this work two distillation and liquid-liquid extraction methods are evaluated to produce glacial bio-acetic acid. Method one uses ethyl acetate for extraction. Method: two uses alamine and diisobutyl ketone. Additionally two different options for meeting energy demands at the biorefinery are modeled. Option one involves burning lignin and natural gas onsite to meet heat/steam and electricity demands. Option two uses only natural gas onsite to meet heat/steam demands, purchases electricity from the grid to meet biorefinery needs, and sells lignin from the poplar biomass as a co-product to a coal burning power plant to be co-fired with coal. System expansion is used to account for byproducts and co-products for the main life cycle assessment. Allocation assessments are also performed to compare the life cycle tradeoffs of using system expansion, mass allocation, or economic allocation for bio-acetic acid production. Finally, a sensitivity analysis is conducted to determine potential effects of a decrease in the fermentation of glucose to acetic acid.Results: Global warming potential (GWP) and fossil fuel use (FFU) for ethyl acetate extraction range from 1000 - 2500 kg CO 2 eq. and 32 - 56 GJ per tonne of acetic acid, respectively. Alamine and diisobutyl ketone extraction method GWP and FFU ranges from -370 - 180 kg CO 2 eq. and 15 - 25 GJ per tonne of acetic acid, respectively.Conclusions: Overall the alamine/diisobutyl ketone extraction method results in lower GWP and FFU values compared to the ethyl acetate extraction method. Only the alamine/diisobutyl extraction method finds GWP and FFU values lower than those of petroleum based acetic acid. For both extraction methods, exporting lignin as a co-product produced larger GWPs and FFU values compared to burning the lignin at the biorefinery.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3