High-performance computing service for bioinformatics and data science

Author:

Courneya Jean-PaulORCID,Mayo AlexaORCID

Abstract

Despite having an ideal setup in their labs for wet work, researchers often lack the computational infrastructure to analyze the magnitude of data that result from “-omics” experiments. In this innovative project, the library supports analysis of high-throughput data from global molecular profiling experiments by offering a high-performance computer with open source software along with expert bioinformationist support. The audience for this new service is faculty, staff, and students for whom using the university’s large scale, CORE computational resources is not warranted because these resources exceed the needs of smaller projects. In the library’s approach, users are empowered to analyze high-throughput data that they otherwise would not be able to on their own computers. To develop the project, the library’s bioinformationist identified the ideal computing hardware and a group of open source bioinformatics software to provide analysis options for experimental data such as scientific images, sequence reads, and flow cytometry files. To close the loop between learning and practice, the bioinformationist developed self-guided learning materials and workshops or consultations on topics such as the National Center for Biotechnology Information’s BLAST, Bioinformatics on the Cloud, and ImageJ. Researchers apply the data analysis techniques that they learned in the classroom in an ideal computing environment.This article was selected by the Virtual Projects Advisory Committee of technology experts after an annual call for projects in MLA-FOCUS and announcements to encourage submissions from all types of libraries.

Publisher

University Library System, University of Pittsburgh

Subject

Library and Information Sciences,Health Informatics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction of Computer Algorithms in Bioinformatics of the Fusion Genetic Algorithm;Mathematical Problems in Engineering;2022-09-22

2. Proposal of Smith-Waterman algorithm on FPGA to accelerate the forward and backtracking steps;PLOS ONE;2022-06-30

3. A simple guide to de novo transcriptome assembly and annotation;Briefings in Bioinformatics;2022-01-24

4. Parallel Implementation of Smith-Waterman Algorithm on FPGA;2021-07-27

5. Embracing the value of research data: introducing the JCHLA/JABSC Data Sharing Policy;Journal of the Canadian Health Libraries Association / Journal de l'Association des bibliothèques de la santé du Canada;2021-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3