1. [1] Code for Iterative energy-based projection on a normal data manifold for anomaly localization, International Conference on Learning Representations (2020) (online), available from <https://github.com/dbbbbm/energy-projection-anomaly/blob/main/energy.py>.
2. [2] Akcay, S., Atapour-Abarghouei, A. and Breckon, T.P.: Ganomaly: Semi-supervised anomaly detection via adversarial training, Asian Conference on Computer Vision, pp.622-637, Springer (2018).
3. [3] Akçay, S., Atapour-Abarghouei, A. and Breckon, T.P.: Skip-ganomaly: Skip connected and adversarially trained encoder-decoder anomaly detection, 2019 International Joint Conference on Neural Networks (IJCNN), pp.1-8, IEEE (2019).
4. [4] An, J. and Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability, Special Lecture on IE, Vol.2, No.1, pp.1-18 (2015).
5. [5] Baur, C., Denner, S., Wiestler, B., Navab, N. and Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain mr images: A comparative study, Medical Image Analysis, p.101952 (2020).